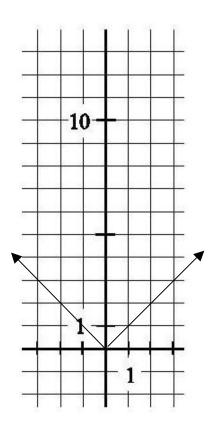
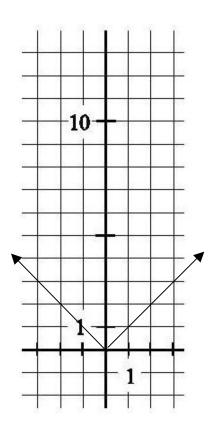

Use your knowledge about transformations to answer the following questions.

1. Notice y = |x| is pictured below. Complete the table and draw in y = 2|x|.


X	-3	-2	-1	0	1	2	3
y = 2 x							

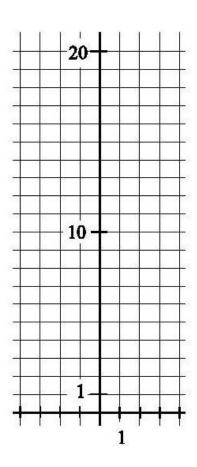
Recall this is called a vertical stretch by a factor of 2.

2. Notice again y = |x| is pictured below. Complete the table and draw in y = |x| + 5.


X	-3	-2	-1	0	1	2	3
y = x	-5						

Recall this is called a **vertical shift up 5 units**.

3. Notice again y = |x| is pictured below. Complete the table and draw in y = |x-1|.


X	-3	-2	-1	0	1	2	3
y = x-1							

Recall this is called a horizontal shift to the right 1 unit.

4. We have seen individual transformations of functions. Let's look at a function whose graph is formed by more than one transformation. Consider $f(x) = x^2$ and $g(x) = 2x^2 + 3$. Complete the table and graph both functions on the plane below.

X	-4	-3	-2	-1	0	1	2	3	4
$f(x) = x^2$									
$g(x) = 2x^2 + 3$	\times								\times

What are the **two** transformations needed to turn the graph of $f(x) = x^2$ into the graph of $g(x) = 2x^2 + 3$? (Do you see them in your graph?)