We will learn how to find x-intercepts (also called roots or zeros) of a single function and how to find intersections of two functions using our calculator. Remember the italicized questions will be graded. Be sure to answer them fully.

1. We will graphically solve $0=2 x^{2}-3 x-10$. This involves, as we have learned, graphing $y=2 x^{2}-3 x-10$ and seeing which x-values make the y-value equal to zero, or equivalently, we're looking for the x -intercepts of this graph.

Use the standard window to graph $y=2 x^{2}-3 x-10$. Notice the graph crosses the x -axis twice. We will find the x-values where this occurs. We'll start with the leftmost (negative) x-intercept.

On the 82 or 83 , once on the graph screen, press the $\mathbf{2}^{\text {nd }}$ key, then the TRACE key. This opens the CALCULATE menu. Select root (called zero on 83). It will ask for a lower bound (or left bound). Move the cursor until it is left of the x-intercept, then press ENTER. (Remember we are starting with the leftmost or negative root.) It will then ask for an upper bound (or right bound). Move the cursor to the right of the root and press ENTER. It will then ask for a guess. Move the cursor to a point that looks like it is near the root itself and press ENTER.

On the 85 , once on the graph screen, press MORE, then select MATH from the menu. Then select ROOT. All you need to do is move the cursor near the x-intercept and press ENTER.

For the 85 , sometimes this does not work; it will not give you a root. When this happens, you must define a lower and upper bound, basically an interval of values in which the calculator will look for the root. Let's practice this now. Again from the graph screen, get to the MATH menu. This time select LOWER. Then move the cursor to the left of the root and press ENTER. Then select UPPER from the menu. Move the cursor to the right of the root and press ENTER. Now select ROOT. Move your cursor near the root and press ENTER. Your screen should read ROOT with a point's coordinates below that. This is an x-intercept on the graph. To get rid of the upper and lower bounds you have just set, simply change the window (RANGE) values. When it regraphs on a different window, the bounds will be erased.

On the 86, from the graph screen, press MORE to get to MATH, and then select MATH. Select ROOT from this menu. It will ask for a left bound. Move the cursor until it is left of the x-intercept, then press ENTER. (Remember we are starting with the leftmost or negative root.) It will then ask for a right bound. Move the cursor to the right of the root and press ENTER. It will then ask for a guess. Move the cursor to a point that looks like it is near the root itself and press ENTER.

It will calculate the x -value of the x -intercept. What is the x-value of the negative x intercept?
2. Repeat the process to find the value of the other root. Remember for the 82,83 , and 86 , the left or lower bound should be left of the root, and the right or upper bound should be right of the root. What is the x-value of the positive x-intercept?
3. So, what are the two solutions to $0=2 x^{2}-3 x-10$?Copy your graph below with the x intercepts marked.
4. Now we will solve $5=2 x^{2}-3 x-10$. We will do this by graphing $y=2 x^{2}-3 x-10$ and $y=5$ and seeing where these two graphs intersect. Put both of these relationships into the grapher as $y 1=2 x^{2}-3 x-10$ and $y 2=5$. You can use the standard window. Notice this adds a horizontal line at the y-value of 5 to our graph with which we were working. But remember, we're now looking for where y is 5 , or the intersection of these two graphs. Let's find the leftmost intersection first.

On the 82 and 83, enter the CALCULATE menu by pressing $2^{\text {nd }}$ then TRACE. Choose INTERSECT. It will ask for the first curve, second curve, and then a guess. The first curve is simply the first graph I want to use. Press ENTER to select the first curve. (It will automatically select the graph of y1. You press ENTER to say you want y1.) The cursor will then switch to the graph of y2. Press ENTER to select it. It will then ask for a guess. You want to move the cursor near the point of intersection. Press ENTER when the cursor is near the leftmost intersection point.

On the 85, press MORE to access the MATH menu. After selecting MATH, then press MORE again to find and select the ISECT option. It will put a cursor on the screen on the graph of y1 and a little $\mathbf{1}$ in the upper right corner (to indicate it's on y1). Press
ENTER to indicate you want to use this yl graph. Then it puts the cursor on the second graph and a little 2 in the upper right corner. Move the cursor (using the left and right arrows) closer to the intersection we want and press ENTER again. You are essentially telling it which two graphs you want the intersection of. It will then calculate the point of intersection.

On the 86, press MORE to get to the MATH menu. Select MATH. Then press MORE again to get to the option ISECT (stands for intersection). Select this option. It will ask for the first curve, second curve, and then a guess. The first curve is simply the first graph I want to use. Press ENTER to select the first curve. (It will automatically select the graph of y1. You press ENTER to say you want y1.) The cursor will then switch to the graph of y2. Press ENTER to select it. It will then ask for a guess. You want to move
the cursor near the point of intersection. Press ENTER when the cursor is near the leftmost intersection point.

What is the x-value of this intersection?
5. Repeat the process to find the other intersection point. What is the x-value of this rightmost intersection?
6. So what are the solutions to $5=2 x^{2}-3 x-10$? Draw the appropriate graph with the intersections labeled.
7. Now solve $15=3 x^{3}+5 x-3$. Include an appropriate graph with the solutions to the equation labeled. (Remember the line $y=15$ will be outside the range of the standard window, so start with the standard window, but then increase ymax to see the line $y=15$.)

